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Abstract—Non-catalytic disproportionation of diarylmethanol derivatives was found to proceed efficiently in supercritical water.
This method was also applied to various diarylmethylamine derivatives to give the disproportionation products in good yields.
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Water has been attracting increased attention as a
medium for chemical reactions in recent years.! The
physicochemical properties of supercritical and near-
critical water are quite different from those of ordinary
water,” and the reactivity of organic compounds is
often enhanced greatly. Early interest in supercritical
water utilization was focused on waste treatment of
such as polymer wastes and toxic compounds, and the
complete air combustion of these wastes with little or
no toxic emission is possible in supercritical water.> On
the other hand, only a few reports have described the
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Table 1. The reaction of la in high-temperature water®

utility of supercritical or near-critical water from the
viewpoint of organic synthesis.*> We now report the
first example of disproportionation® of diarylmethanol
derivatives (1) in supercritical water. This transforma-
tion is applicable to various diarylmethanol and diaryl-
methylamine derivatives (1) to give the corresponding
diarylmethanes (2) and diaryl ketones (3) in excellent
yields, respectively.

During the course of our study to investigate the reac-
tivity of alcohols in supercritical water, we found that
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Entry Temp. Water Density Ton product Reaction period Conv. Isolated yield (%)
O (& (g/em®)® (—log Kw) (min) (%0)
2a 3a 4a
1 435 0.5 0.05 22.0 90 100 42 40 -
2 435 3.0 0.30 13.8 90 100 46 48 -
3 435 5.4 0.54 11.1 90 100 43 46 -
4 435 0 - - 90 47 11 12 -
5 435 3.0 0.30 13.8 15 69 27 28 -
6° 300 3.0 - - 90 44 15 16 Trace
7 200 3.0 - - 90 30 - - 27

& Reaction conditions: 2.0 mmol of 1a, H,O, under Ar in a tubular steel bomb reactor (10 mL), unless otherwise stated.
® The value of supercritical water density: water density=water (g)/the volume of reactor (10 mL).

¢ A trace amount of 4a was detected by '"H NMR.

* Corresponding author.
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X supercritical water O
1 Ar2 3 . Ar! /\Al’z + o )I\ >
Ar r“ 435 °C, 0.30 g/ cm®, 90 min, Ar AT SAr )
1 2 3
X = OH, NH»
Table 2. Disproportionation of 1 in supercritical water®
1 Ar! Ar? X Isolated yield (%)
Alkane 2 Ketone 3
1b C.H, 3-MeC H, OH 46 43
Ic CeH, 4-MeCH, OH 47 42
1d 4-MeC H, 4-MeCH, OH 34 34
le CH, 2-Naphtyl OH 39 38
1f C.H, 4-Pyridyl OH 49b 49%
1g CeH, CH, NH, 49 49
1h C.H, 4-MeCH, NH, 41 4
1i 4-MeCH, 4-MeC,H, NH, 37 38
1j C¢Hs Cyclohexyl OH Complex mixture

& Reaction conditions: 2.0 mmol of 1, 3.0 mL of H,O, at 435°C, under Ar, unless otherwise stated.

® The yield was determined by 'H NMR.
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diphenylmethanol (1a) was transformed into diphenyl-
methane (2a) and benzophenone (3a). In order to reveal
the scope of the present unique disproportionation, la
was treated under several conditions summarized in Eq.
(1) and Table 1.7 In supercritical water, the present
disproportionation proceeded smoothly over the exam-
ined water density range (0.05, 0.30, and 0.54 g/cm?)
(entries 1, 2, and 3). Although change in the density of
supercritical water is reported to influence ion product
at the same temperature,®® it did not affect the reac-
tion. When 1a was heated at 435°C without water, the
yields of the desirable products greatly decreased (entry
4). This fact indicates that supercritical water acceler-
ates the disproportionation. The shorter reaction time
gave the corresponding disproportionation products in
low yields along with unchanged 1a (entry 5). On the
other hand, the reaction temperature affected the selec-
tivity of products. At 300°C, we detected a trace
amount of bis(diphenylmethyl) ether (4a), along with 2a
and 3a (entry 6). Ether 4a was obtained in 27% yield
instead of the disproportionation products at 200°C
(entry 7).

This disproportionation was effected with other diaryl-
methanols (Eq. (2), Table 2). Similar treatment of
diarylmethanols (1b—d) with supercritical water gave the
corresponding disproportionation products in good
yields. The substrates bearing a naphthyl (le) or 4-
pyridyl group (1f)!° also gave the disproportionation
products. In addition to the diarylmethanols, primary
amines such as diphenylmethylamine derivatives (1g—i)
were found to give 2 and 3 in good yields. When 1g was
treated under supercritical condition for 15 minutes, a
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trace amount of 1g and 1a (17%) was observed along
with 2a (35%) and 3a (37%). This fact suggests the
amine derivatives are first transformed to the corre-
sponding alcohol derivatives (1). Cyclohexylphenyl-
methanol (1j), bearing a hydrogen atom at the
a-position of the hydroxyl group, gave a complex mix-
ture containing benzylidenecyclohexane and 1-benzyl-
cyclohexene along with a trace amount of the dispro-
portionation products. The unexpected products were
yielded through intramolecular dehydration of 1j. The
alkenes formation from alcohols was reported to be
accelerated in supercritical water.!!

When ether 4a was treated under the supercritical con-
dition, the corresponding products were obtained in
excellent yields (Eq. (3)).

Based on these results, the disproportionation is consid-
ered to proceed through the pathway shown in Scheme
1. It was already reported that diarylmethanols were
transformed into the corresponding diarylmethanes and
diarylketones in the presence of p-toluenesulfonic acid
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or trifluoromethanesulfonic acid, and the reaction is
considered to proceed via a hydride transfer mechanism
from a bis(diarylmethyl) ether 4 intermediate.!?> Conse-
quently, we consider the present disproportionation to
proceed through the intramolecular hydrogen transfer
of 4 to give alkane 2 and ketone 3. During the pro-
cesses, supercritical water not only works as a reaction
medium but also accelerates the reaction.

In conclusion, we have developed a novel dispropor-
tionation of diarylmethanol derivatives and diaryl-
methylamine derivatives. In supercritical water, this
disproportionation proceeds under neutral conditions
efficiently. Although the present method can be applied
only to limited substrates, this report reveals the syn-
thetic utility of supercritical water as a reaction
medium. More detailed study on the reaction mecha-
nism as well as other synthetic applications of supercrit-
ical water are now in progress.
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